Anak Krakatau

Crater summit Anak Krakatau.

Anak Krakatau eruption

Strombolian eruption of Anak Krakatau.

Anak Krakatau eruption

Explosive eruption of Anak Krakatau

Ujung Kulon National Park

The Javan Rhinoceros Sondaicus.

Cigenter River Ujung Kulon National Park

Canoeing along Cigenter River searching for The Javan Rhinoceros.

Baduy Tribe

Group of Baduy Tribe traveling on bare foot.

Putri Carita Fall or Little Green Canyon Banten

One of beautiful and excotic waterfall nearby Carita Beach.

Krakatau Camp Tour

Explore Krakatau for two days 1 night by night in the tent.

Krakatau underwater

Explore underwater around Krakatau.

Krakatau and Island surrounding

Walking along the beach while seeing an amazing view.

Anak Krakatau

Climbing through the desert to get outer rim.

Tampilkan postingan dengan label volcano. Tampilkan semua postingan
Tampilkan postingan dengan label volcano. Tampilkan semua postingan

Volcano



The word volcano is derived from the name of Vulcano, a volcanic island in the Aeolian Islands of Italy whose name in turn comes from Vulcan, the god of fire in Roman mythology. The study of volcanoes is called volcanology, sometimes spelled vulcanology

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

Earth's volcanoes occur because its crust is broken into 17 major, rigid tectonic plates that float on a hotter, softer layer in its mantle. Therefore, on Earth, volcanoes are generally found where tectonic plates are diverging or converging, and most are found underwater. For example, a mid-oceanic ridge, such as the Mid-Atlantic Ridge, has volcanoes caused by divergent tectonic plates whereas the Pacific Ring of Fire has volcanoes caused by convergent tectonic plates. Volcanoes can also form where there is stretching and thinning of the crust's plates, e.g., in the East African Rift and the Wells Gray-Clearwater volcanic field and Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so-called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Volcanoes are usually not created where two tectonic plates slide past one another.

Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. One such hazard is that volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature; the melted particles then adhere to the turbine blades and alter their shape, disrupting the operation of the turbine. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere (or troposphere); however, they also absorb heat radiated from the Earth, thereby warming the upper atmosphere (or stratosphere). Historically, volcanic winters have caused catastrophic famines.

Plate tectonics
Divergent plate boundaries
At the mid-oceanic ridges, two tectonic plates diverge from one another as new oceanic crust is formed by the cooling and solidifying of hot molten rock. Because the crust is very thin at these ridges due to the pull of the tectonic plates, the release of pressure leads to adiabatic expansion (without transfer of heat or matter) and the partial melting of the mantle, causing volcanism and creating new oceanic crust. Most divergent plate boundaries are at the bottom of the oceans; therefore, most volcanic activity on the Earth is submarine, forming new seafloor. Black smokers (also known as deep sea vents) are evidence of this kind of volcanic activity. Where the mid-oceanic ridge is above sea-level, volcanic islands are formed; for example, Iceland.

Convergent plate boundaries
Subduction zones are places where two plates, usually an oceanic plate and a continental plate, collide. In this case, the oceanic plate subducts, or submerges, under the continental plate, forming a deep ocean trench just offshore. In a process called flux melting, water released from the subducting plate lowers the melting temperature of the overlying mantle wedge, thus creating magma. This magma tends to be extremely viscous because of its high silica content, so it often does not attain the surface but cools and solidifies at depth. When it does reach the surface, however, a volcano is formed. Typical examples are Mount Etna and the volcanoes in the Pacific Ring of Fire.

Hotspots
Hotspots are volcanic areas believed to be formed by mantle plumes, which are hypothesized to be columns of hot material rising from the core-mantle boundary in a fixed space that causes large-volume melting. Because tectonic plates move across them, each volcano becomes dormant and is eventually re-formed as the plate advances over the postulated plume. The Hawaiian Islands are said to have been formed in such a manner; so has the Snake River Plain, with the Yellowstone Caldera being the part of the North American plate above the hot spot. This theory, however, has been doubted

Why do volcanoes-erupt


There is a lot more to volcanic eruptions tha meets the eye – they are complex, diverse and caused by a multitude of events. Directly underneath the Earth’s crust there are layers of molten rock, which, because of the high temperatures at the core, are melted to form magma.

Magma contains various gases – predominantly carbon dioxide, water vapour and sulphur dioxide. It is stored in magma chambers that are sealed beneath a lid of solid rock. Due to its liquefied state, the magma is less dense than the rock above it and begins to rise. Simultaneously water vapour escapes as bubbles, increasing the relative density of the carbon dioxide and sulphur dioxide.

Over time these gases expand to 1000 times their original size, increasing the pressure on the chamber lid to such an extent that an eruption occurs. This is similar to when you shake a soft drink and it explodes when opening the lid – by shaking it you are separating carbon dioxide molecules, causing a build-up of gas and pressure.

When magma is released – through the ruptures in Earth’s crust we call volcanoes – it is known as lava, which is hot as 1100 degrees Celsius. Typically, it will also form pyroclastic clouds: cascades of hot ash, gas and molten rock fragments, which are around 1000 degrees Celsius and travel around 700 kilometres per hour.

What causes a volcanic eruption?
The fundamental concept of an eruption is that an increase in pressure on the chamber lid causes the magma to be released from beneath it. However, there are variances in the cause of this magma movement and the type of eruption generated.

Volcanoes are usually found near the boundaries of Earth’s tectonic plates. These can either spread apart and leave a gap in the surface, or they can push underneath one another – a process called subduction. When the plates separate, magma rises slowly in order to fill the gap through a gentle explosion of thin basaltic lava, which is at temperatures from 800 to 1200 degrees Celsius.

However, when one plate pushes underneath the other, this forces molten rock, sediment and seawater down into the magma chamber. The rock and sediment are melted into fresh magma, and eventually overfill the chamber until it erupts, releasing sticky and thick andesitic lava, at temperatures from 800 to 1000 degrees Celsius. Plate tectonics is, however, not the only cause of eruptions.

Decreasing temperatures can cause old magma to crystalise and sink to the bottom of the chamber, forcing fresh liquefied magma up and out – similar to what happens when a brick is dropped in a bucket of water. A decrease in external pressure on the magma chamber may also allow for an eruption by minimising its ability to hold back increasing pressures from the inside.

This is often caused by natural events, such as typhoons, that decrease rock density, or by glacial melting on top of the chamber lid, which alters molten rock composition. Glacial melting is believed to have been one of the causes of the 2010 Eyjafjallajökull eruption in Iceland. So-called ‘hot-spot’ volcanoes are ones that form away from tectonic plate boundaries. They are created as plates move and expose hot uprisings from Earth’s mantle, known as plumes. The volcanoes found in the Hawaiian islands are of this sort.

What are the different main types of volcano?
A shield volcano has a flat dome-like appearance and releases basaltic lava in a gentle manner that is often slow and easy for humans to outrun. A stratovolcano has the classic cone shape and releases andesitic magma. It produces violent large eruptions and often leads to pyroclastic flows and mudflows. The active Mount Agung volcano in Bali falls under this category.

A caldera volcano has a circular basin-shaped appearance and releases thick rhyolotic lava which is between 650 to 800 degrees Celsius. Its shape is due to the magnitude of its eruptions, which cause the magma chamber walls to collapse. This occurs as the entire chamber empties, leaving it unsupported and liable to cave in. This process is cyclical, and does not mean the volcano is dormant.

What determines the size of an eruption?
Ultimately, the size of an eruption will depend on the thickness of the magma, the density of gases it contains and the amount of new magma being pushed into the magma chamber. Basaltic lava allows gas to escape easily, resulting in smaller eruptions, while andesitic and rhyolotic lava makes it harder for the gas to escape, leading to larger eruptions.

Typical volcanic hazards
Lava is often thought to be the main danger of a volcanic eruption, but this is not the case. Numerous hazards result from eruptions and they can have a range of consequences. The most dangerous are the pyroclastic clouds, which destroy anything in their path. Other hazards include ash clouds, ash rain, mudslides, earthquakes, tsunamis, odd weather patterns and glacial flooding.