Anak Krakatau

Crater summit Anak Krakatau.

Anak Krakatau eruption

Strombolian eruption of Anak Krakatau.

Anak Krakatau eruption

Explosive eruption of Anak Krakatau

Ujung Kulon National Park

The Javan Rhinoceros Sondaicus.

Cigenter River Ujung Kulon National Park

Canoeing along Cigenter River searching for The Javan Rhinoceros.

Baduy Tribe

Group of Baduy Tribe traveling on bare foot.

Putri Carita Fall or Little Green Canyon Banten

One of beautiful and excotic waterfall nearby Carita Beach.

Krakatau Camp Tour

Explore Krakatau for two days 1 night by night in the tent.

Krakatau underwater

Explore underwater around Krakatau.

Krakatau and Island surrounding

Walking along the beach while seeing an amazing view.

Anak Krakatau

Climbing through the desert to get outer rim.

Early warning signals heralded fatal collapse of Krakatau volcano

Early warning signals heralded fatal collapse of Krakatau volcano
By Helmholtz Centre Potsdam



On 22 December 2018, a flank of the Anak Krakatau volcano plunged into the Sunda strait between the Indonesian islands of Sumatra and Java, triggering a tsunami that killed 430 people. An international research team led by Thomas Walter of the German Research Centre for Geosciences GFZ in Potsdam has now shown that the volcano produced clear warning signals before its collapse. This was the result of the analysis of a large amount of data from very different sources collected during ground-based measurements as well as by drones and satellites. Satellite data, for example, showed increased temperatures and ground movement on the southwestern flank months before the catastrophe. Seismic data and low-frequency sound waves from a smaller earthquake two minutes before the sudden collapse of a large part of the volcano had heralded the fatal event. This collapse finally triggered the deadly tsunami. The researchers want to use the analysis of this complex event cascade to improve monitoring and early detection of other volcanoes. Their study was published in the journal Nature Communications.

Volcanic islands like Anak Krakatau often consist of unstable material. Therefore, every now and then a collapse of volcanic flanks occurs on these islands. Yet, this had not been precisely measured until now. "At Krakatau, we were able to observe for the first time how the erosion of such a volcanic flank took place and which signals announced it," Thomas Walter, a volcanologist at the GFZ explains. In their study at Anak Krakatau the researchers were able to show that over months the movement of the southeast flank towards the sea formed a kind of slide. The sudden accelerated slide of the flank into the sea, the so-called flank collapse, lasted only two minutes and was measured by seismographs and infrasound networks before the first impacts of the tsunami had reached the coasts.

"We used an exceptionally broad range of methods: From satellite observation to ground-based seismic data, from infrasound to drone data, from temperature measurements to chemical analysis of eruption products," says Thomas Walter. "Today’s almost unrestricted access to worldwide data was critical in this. In the days following the tsunami, it allowed us to analyse this event at different locations in different countries at the same time.”
Improved monitoring systems as a goal
Similar to Anak Krakatau such events could also herald themselves on other volcanic islands in the Atlantic, Pacific or even in the Mediterranean, to which the results of the study could then presumably be transferred, according to Walter. "We assume that tsunami early warning systems must also take into account events caused by landslides. Those volcanoes that are at risk of slipping should be integrated into the monitoring systems.”
Seismologist Frederik Tilmann from GFZ and Freie Universität Berlin was also involved in the study. He says that the unusual seismic pattern of the flank collapse was a particular challenge when analysing the data. In contrast to tectonic earthquakes, only a small part of this pattern consisted of high frequencies around 1 Hertz (1 oscillation per second). Instead, the earthquake waves contained stronger components in the range of low frequencies up to about 0.03 Hertz (1 oscillation per 35 seconds). "This property was the reason why the event was not detected in any routine evaluation," says Tilmann.
The effort of monitoring systems will pay back, since a large part of the victims of volcanoes in the past two centuries have not been killed by the eruptions themselves, but by landslides and tsunamis, according to Walter. The new results show that the danger of collapsing volcanoes has so far been underestimated. The first step now is to identify the volcanoes at particular risk and to supplement existing measurement methods with additional sensors and new algorithms for evaluation. "We are confident that our findings will lead to the development of improved monitoring systems," said Walter.

Understanding eruptive activity and related hazards at Krakatau volcano

Understanding eruptive activity and related hazards at Krakatau volcano
BGS Research — Volcanoes




When asked what activity is commonly associated with a volcanic eruption, the common response might be lava flows, ash fall, pyroclastic density currents or even lahars, but island volcanoes are susceptible to a much more devastating hazard: tsunamis.
Volcanic tsunamis typically occur when a portion of the volcano collapses or pyroclastic density currents flow into the surrounding water, forming tsunamis that reach many hundreds of kilometres away from the volcano.

Krakatau
One volcano that is commonly thought of when considering tsunamis associated with volcanic activity is Krakatau, in the Sunda Straits in Indonesia: a classic example is the 1883 eruption. Numerous tsunamis formed as material was displaced into the surrounding seas, with the largest inundating large portions of the Sunda Straits, resulting in the deaths of 33 000 people. Despite the magnitude of devastation associated with this eruption, the exact mechanism behind the tsunamis is still not known.

Anak Krakatau
Activity at the Krakatau volcanic complex did not cease following the 1883 event, and, in 1929, Anak Krakatau (the ‘child’ of Krakatau) emerged from the sea. Over the following 90 years, frequent Strombolian eruptions resulted in growth of the volcano. On 22 December 2018, a large portion of the volcano collapsed into the surrounding seas, causing a tsunami that once again impacted large areas of the Sunda Straits, resulting in 437 deaths. The collapse was associated with a large eruption that quickly rebuilt the volcano, obscuring much of the evidence regarding the collapse.

To understand eruptive processes and implications for tsunami initiation at Krakatau. As part of an NSF-NERC project, a team of researchers from the BGS, the University of Birmingham, University College London and the University of Rhode Island are bringing together geological and seismic reflection analysis techniques to better define eruption stratigraphy and volumes of the 1883 event.
This information will inform numerical modelling of the pyroclastic density currents associated with this event, the results of which will in turn be used to initiate numerical tsunami simulations. It is hoped that the insight gained from the study will help identify other volcanoes with the potential for producing tsunamis and to guide our modelling of such events.
We are also part of a NERC Urgency Grant, looking at the 2018 eruptive event to try and understand the relation between the collapse and eruption processes through analysis of satellite imagery, eruption and tsunami deposits and numerical modelling of the eruption plume.
In August 2019, fieldwork was conducted on the islands surrounding Anak Krakatau to identify, analyse and sample deposits from both the 1883 and 2018 events. Grain size, componentry and chemical analysis of these deposits will inform understanding of controls on these eruptions

Krakatau Camp Tour

 Krakatau Camp Tour
2 days boat, trek, hike, snorkel and camp around Krakatau
Take a high-powered speedboat cruise the Sunda Strait hike Anak Krakatau and snorkel nearby Rakata Island.
You will ride a high-powered speedboat to the newly formed island (Anak Krakatau). Camp on nearby the island, hike up to view molten of rock and island surrounding.